Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

CONTINUOUS INTERNAL EVALUATION- 1

Dept: ECE	Sem / Div: 3EC A & B	Sub: Computer Organization	S Code: 18EC35		
		and Architecture			
Date: 21.10.2020	Time: 9:30-11:00 am	Max Marks: 50	Elective: N		
Note: Answer any 2 full questions, choosing one full question from each part.					

-

CRM08

Q N	_	Marks	RBT	COs		
1	PART A					
1 8	With a neat diagram, explain the basic operational concept of computer.	8	L2	CO1		
1	Evaluate (A+B) * (C+D) in three-, two-, one- and zero-address instructions.	8	L3	CO2		
	Write a short note on –	9	L2	CO2		
	(i) Memory Locations and Addresses					
	(ii) Big-endian and Little-endian assignment OR					
2	Explain in brief, the key performance parameters that affect the	8	L2	CO1		
	processor performance.					
1	Illustrate instructions and instruction sequencing with an example.	8	L3	CO2		
	Write a short note on – (i) Represent 85.125 in IEEE floating point using single precision	9	L2	CO2		
Ц	(ii) Condition Codes.					
PART B						
3 8	What is addressing mode? Explain any four types of addressing modes with two examples each.	8	L2	CO2		
	Write an assembly language program to add 'n' numbers of an array.	8	L2	CO2		
	How I/O devices are controlled? What is program controlled I/O? Explain with an example and sketch.	9	L2	CO2		
4	Explain the various assembler directives used in assembly language program	8	L2	CO2		
	Explain the shift and rotate operations with examples.	8	L2	CO2		
-	What is Stack? Explain stack operations with an examples.	8	L2	CO2		

Prepared by: Suhandas HOD